Part Number Hot Search : 
EDZ12 SY5803 85EPF10 HT95L100 HD74AL 2367A AM2914 AK8130BV
Product Description
Full Text Search
 

To Download TB6556FG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TB6556F/FG
TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic
TB6556F/FG
3-Phase Full-Wave Sine-Wave PWM Brushless Motor Controller
Features
* * * * * * * * Sine-wave PWM control Built-in triangular-wave generator (carrier cycle = fosc/252 (Hz)) Built-in lead angle control function (0 to 58 in 32 steps) External setting/automatic internal setting Built-in dead time function (setting 2.6 s or 3.8 s) Supports bootstrap circuit Overcurrent protection signal input pin Built-in regulator (Vrefout = 5 V (typ.), 30 mA (max)) Operating supply voltage range: VCC = 6 V to 10 V Weight: 0.33 g (typ.)
TB6556FG: TB6556FG is a Pb-free product. The following conditions apply to solderability: *Solderability 1. Use of Sn-63Pb solder bath *solder bath temperature = 230C *dipping time = 5 seconds *number of times = once *use of R-type flux 2. Use of Sn-3.0Ag-0.5Cu solder bath *solder bath temperature = 245C *dipping time = 5 seconds *the number of times = once *use of R-type flux
1
2005-01-19
TB6556F/FG
Block Diagram
Gin 24 Gout 25 PH 26 + LPF 27 LA 28 Upper limit Filter Lower limit Xin 14 Xout 15 HU 21 HV 20 HW 19 Ve 2 VCC 1 Regulator Internal Phase reference matching voltage Position detector Counter Output waveform generator Data select Phase V Comparator Setting dead time System clock generator 5-bit AD Phase U Comparator 9U 6X 8V 5Y 7W 120/180 GND 13 Vrefout 23 Power-on reset RES 11 Idc 3 CW/CCW 18 SS 22 FG 17 EV 16 ST/SP CW/CCW Protection ERR & GB reset FG Rotating direction Comparator PWM HU HV HW Charger Switching 120/180 and gate block protection on/off 4Z 6-bit triangular wave generator UL 30 LL 29
Peak hold
10 Td
Phase W
Comparator
12 OS
120turn-on matrix
2
2005-01-19
TB6556F/FG
Pin Description
Pin No. 21 20 19 18 Symbol HU HV HW CW/CCW Description Positional signal input pin U Positional signal input pin V Positional signal input pin W Rotation direction signal input pin Reset-signal-input pin Voltage command signal Gain setting L: Forward H: Reverse L: Reset (output is non-active) operation/halt operation, also used for gate protection, built-in pull-up resistor With built-in pull-down resistor Idc signal level at a gain that optimizes the LA Connect the peak-hold capacitor and discharge resistor to GND, parallel to each other Connect the low-pass filter capacitor (built-in 100 k resistor) Sets 0 to 58 in 32 steps Set lower limit for LA (LL = 0 V to 5.0 V) Set upper limit for LA (UL = 0 V to 5.0 V) L: Active LOW H: Active HIGH Inputs DC link current. Reference voltage: 0.5 V With built-in filter ( 1 s), built-in digital filter ( 1 s) - - With built-in feedback resistor When positional signal is HHH or LLL, gate block protection operates. With built-in pull-up resistor, built-in digital filter ( 500 ns) - Remarks
11 2 24 25 26 27 28 29 30 12
RES Ve Gin Gout PH LPF LA LL UL OS
Peak hold RC low-pass filter Lead angle setting signal input pin Lower limit for LA Upper limit for LA Inputs output logic select signal Inputs overcurrent protection signal Inputs clock signal Outputs clock signal Outputs reference voltage signal FG signal output pin Reverse rotation detection signal Outputs turn-on signal Outputs turn-on signal Outputs turn-on signal
3 14 15 23 17 16 9 8 7 6 5 4 1 10 22 13
Idc Xin Xout Vrefout FG REV U V W X Y Z VCC Td SS GND
5 V (typ.), 30 mA (max) Outputs 3 PPR of positional signal Detects reverse rotation.
Select active HIGH or active LOW using the output logic select pin. Outputs turn-on signal Outputs turn-on signal Outputs turn-on signal Power supply voltage pin Inputs setting dead time 120/180 select signal Ground pin VCC = 6 to 10 V L: 3.8 s, H or OPEN: 1.9 s L: 120 turn-on mode, H or OPEN: 180 turn-on mode
3
2005-01-19
TB6556F/FG
Input/Output Equivalent Circuits
Pin Description Symbol Input/Output Signal Input/Output Internal Circuit
Digital Positional signal input pin U Positional signal input pin V Positional signal input pin W HU HV HW With Schmitt trigger Hysteresis 300 mV (typ.) Digital filter: 500 ns (typ.) L: 0.8 V (max) H: Vrefout - 1 V (min)
Vrefout Vrefout 200 k 2.0 k Vrefout Vrefout 2.0 k Vrefout Vrefout 2.0 k Vrefout Vrefout 200 k 2.0 k VCC 100 150 k 100 k 100 k
Forward/reverse switching input pin CW/CCW L: Forward (CW) H: Reverse (CCW)
Digital L: 0.8 V (max) H: Vrefout - 1 V (min)
Reset input L: Stops operation (reset) H: Operates RES
Digital L: 0.8 V (max) H: Vrefout - 1 V (min)
Digital 120/180 select signal SS L: 120 turn-on mode H: 180 turn-on mode (OPEN) With Schmitt trigger Hysteresis: 300 mV (typ.) L: 0.8 V (max) H: Vrefout - 1 V (min)
Voltage command signal 1.0 V < Ve 2.1 V Refresh operation (X, Y, Z pins: ON duty of 8%) Ve
Analog Input voltage range 0 to 5.4 V Input voltage of 5.4 V or higher is clipped to 5.4 V.
4
2005-01-19
TB6556F/FG
Pin Description Symbol Input/Output Signal When LA is fixed externally, connect LL to GND and UL to Vrefout, and then input the setting voltage to the LA pin. Lead angle setting signal input pin 0 V: 0 5 V: 58 (5-bit AD) LA Input voltage of Vrefout or higher is clipped to Vrefout. When LA is fixed automatically, open the LA pin. In this state, the LA pin is used only for confirmation of LA width. Input voltage range: 0 V to 5.0 V (Vrefout) Input/Output Internal Circuit
VCC
100 200 k
Automatic LA circuit
VCC Non-inverted amplifier 25 dB (max) Gout output voltage LOW: GND HIGH: VCC - 1.7 V
VCC
Gain setting signal input (LA setting)
Gin Gout
Gin
100 Gout
Idc
To peak hold circuit
VCC Connect the peak-hold capacitor and discharge resistor to GND, parallel to each other. 100 k/0.1F recommended
Peak hold (LA setting)
PH
100 100
VCC Connect the low-pass filter capacitor (built-in 100 k resistor) 0.1F recommended
Low-pass filter (LA setting)
LPF
100 k 100
VCC Clip lower limit for LA LL = 0 V to 5.0 V When LL > UL, LA is fixed at LL value.
Lower limit for LA
LL
100
5
2005-01-19
TB6556F/FG
Pin Description Symbol Input/Output Signal Input/Output Internal Circuit
VCC Clip upper limit for LA UL = 0 V to 5.0 V When LL > UL, LA is fixed at LL value.
Upper limit for LA
UL
100
Vrefout Vrefout Setting dead time input pin L: 3.8 s H or OPEN: 1.9 s Td Digital L: 0.8 V (max) H: Vrefout - 1 V (min) 100 k 2 k Vrefout Vrefout Output logic select signal input pin OS L: Active LOW H: Active HIGH L: 0.8 V (max) H: Vrefout - 1 V (min) Digital 100 k 2 k VCC Analog Overcurrent protection signal input pin Idc Digital filter: 1 s (typ.) Gate protected at 0.5 V or higher (released at carrier cycle) 200 k 5 pF 0.5 V 100 Gout Gin Comparator Vrefout Vrefout
Clock signal input pin
Xin Operating range 2 MHz to 8 MHz (crystal oscillation) Xin
Xout
Clock signal output pin
Xout
360 k
6
2005-01-19
TB6556F/FG
Pin Description Symbol Input/Output Signal Input/Output Internal Circuit
VCC
VCC VCC
Reference voltage signal output pin
Vrefout
5 0.5 V (max 30 mA)
Vrefout
Vrefout
Reverse-rotation-detection signal output pin
Digital REV Push-pull output: 1 mA (max) 100
Vrefout
Vrefout
Digital FG signal output pin FG Push-pull output: 1 mA (max) 100
Vrefout Turn-on signal output pin U Turn-on signal output pin V Turn-on signal output pin W Turn-on signal output pin X Turn-on signal output pin Y Turn-on signal output pin Z U V W X Y Z Analog Push-pull output: 2 mA (max) 100 L: 0.78 V (max) H: Vrefout - 0.78 V (min)
7
2005-01-19
TB6556F/FG
Maximum Ratings (Ta = 25C)
Characteristics Supply voltage Input voltage Turn-on signal output current Power dissipation Operating temperature Storage temperature Symbol VCC Vin (1) Vin (2) IOUT PD Topr Tstg Rating 12 -0.3~VCC (Note 1) -0.3~Vrefout + 0.3 (Note 2) 2 1.50 -30~115 -50~150 (Note 3) (Note 4) Unit V V mA W C C
Note 1: Vin (1) pin: Ve, LA, Gin, Gout, PH, LPF, LL, UL Note 2: Vin (2) pin: HU, HV, HW, CW/CCW, RES, OS, Idc, Td, SS Note 3: When mounted on PCB (universal 50 x 50 x 1.6 mm, Cu 30%) Note 4: Operating temperature range is determined by the PD - Ta characteristic.
Recommended Operating Conditions (Ta = 25C)
Characteristics Supply voltage Crystal oscillation frequency Symbol VCC Xin Min 6 2 Typ. 7 4 Max 10 8 Unit V MHz
PD - Ta
2.0 (1) When mounted on PCB Universal 50 x 50 x 1.6 mm 1.5 (2) IC only Rth (j-a) = 110C/W (1) 1.0
Power dissipation
PD (W)
(2) 0.5
0 0
50
100
150
200
Ambient temperature
Ta
(C)
8
2005-01-19
TB6556F/FG
Electrical Characteristics (Ta = 25C, VCC = 7 V)
Characteristics Supply current Symbol ICC Iin (1)-1 Input current Iin (1)-2 Iin (2)-1 Iin (2)-2 HIGH Vin LOW Input voltage Ve H M L Input hysteresis voltage Input delay time VH VDT VDC VOUT (H)-1 VOUT (L)-1 VREV (H) Output voltage VREV (L) VFG (H) VFG (L) Vrefout Output leakage current Output off-time by upper/lower transistor (Note 6) Overcurrent detection LA gain setting amp IL (H) IL (L) TOFF (H) TOFF (L) Vdc AMPOUT AMPOFS LA limit setting difference LA peak hold output current L U PHOUT TLA (0) Lead angle correction TLA (2.5) TLA (5) VCC (H) VCC monitor VCC (L) VH PWM Duty 100% Refresh Start motor operation Turned-off Refresh HU, HV, HW, SS HU, HV, HW Idc IOUT = 2 mA IOUT = -2 mA IOUT = 1 mA IOUT = -1 mA IOUT = 1 mA IOUT = -1 mA IOUT = 30 mA VOUT = 0 V VOUT = 3.5 V Xin = 4.19 MHz Xin = 4.19 MHz U, V, W, X, Y, Z U, V, W, X, Y, Z REV REV FG FG Vrefout U, V, W, X, Y, Z U, V, W, X, Y, Z (Note 5) Test Circuit Vrefout = open Vin = 5 V Vin = 5 V Vin = 0 V Vin = 0 V LA Ve HU, HV, HW, SS CW/CCW, OS, Td, RES Test Condition Min -50 -100 Vrefout -1 5.1 1.8 0.7 Typ. 5 25 35 -25 -50 5.4 2.1 1.0 0.3 0.5 1.0 Max 8 50 70 Vrefout 0.8 5.7 2.4 1.3 0.78 1.0 1.0 5.5 10 10 s 3.0 0.46 5 -20 -20 27.5 53.5 4.2 3.7 3.8 0.5 -40 0 32 59 4.5 4.0 0.5 0.54 20 mV 20 5 34.5 62.5 4.8 4.3 V mA V mA mV A V V s V A Unit mA
HU, HV, HW, CW/CCW, RES, OS, Td, SS
V
Vrefout Vrefout - 0.78 - 0.3 0.3
Vrefout Vrefout - 1.0 - 0.2 0.2
Vrefout Vrefout - 1.0 - 0.2 4.5 1.5 0.2 5.0 0 0 1.9
Td = HIGH or OPEN, Xin = 4.19 MHz, IOUT = 2 mA, OS = HIGH/LOW Td = LOW, Xin = 4.19 MHz, IOUT = 2 mA, OS = HIGH/LOW Idc GOUT output current GIN, GOUT 11 k/1 k LL = 0.7 V UL = 2.0 V PH output current LA = 0 V or OPEN, Hall IN = 100 Hz LA = 2.5 V, Hall IN = 100 Hz LA = 5 V, Hall IN = 100 Hz Output start operation point No output operation point Input hysteresis width
Note 5: Toshiba does not implement testing before shipping.
9
2005-01-19
TB6556F/FG
Note 6: TOFF OS = HIGH
Turn-on signal (U, V, W) TOFF Turn-on signal (X, Y, Z) 0.78 V 0.78 V 0.78 V 0.78 V TOFF
OS = LOW
Turn-on signal (U, V, W) Vrefout - 0.78 V TOFF Vrefout - 0.78 V Turn-on signal (X, Y, Z) Vrefout - 0.78 V TOFF Vrefout - 0.78 V
10
2005-01-19
TB6556F/FG
Functional Description
1. Basic operation
The motor is driven by the square-wave turn-on signal based on a positional signal. When the positional signal reaches number of rotations f = 5 Hz or higher, the rotor position is estimated according to the positional signal and a modulation wave is generated. The modulation wave and the triangular wave are compared; then the sine-wave PWM signal is generated and the motor is driven. From start to 5 Hz: When driven by square wave (120 turn-on) f = fosc/(212 x 32 x 6) 5 Hz~: When driven by sine-wave PWM (180 turn-on); when fosc = 4 MHz, approx. 5 Hz
2. Select drive function
This function can select drive mode. SS pin HIGH or OPEN = Sine-wave PWM drive (180 turn-on mode) LOW = Square-wave drive (120 turn-on mode) Note: If the position sensing signal is f = 5 Hz or lower, the driver is 120 turn-on mode even when SS = HIGH.
3. Ve voltage command signal function and function to stabilize bootstrap voltage
(1) (2) (3) When the voltage command signal is input at Ve < 1.0 V: = Turns off output (gate protection) When the voltage command signal is input at 1.0 V < Ve < 2.1 V: = Turns on the lower transistor at the regular (carrier) cycle. (ON duty is approx. 8%.) When the voltage command signal is input at Ve > 2.1 V: During sin-wave drive, outputs drive signal as it is. During square-drive, forcibly turns on the lower transistor at regular (carrier) cycle. (ON duty is approx. 8%) Note: At startup, turn the lower transistor on for a fixed time with 1.0 V < Ve < 2.1 V to charge the upper = transistor gate power supply.
PWM Duty
100%
(1) 1.0 V
(2) 2.1 V
(3) 5.4 V Ve
4. Dead time function: upper/lower transistor output off-time
When the motor is driven by sine-wave PWM, dead time is digitally generated in the IC to prevent a short circuit caused by the simultaneous turning on of upper and lower external power devices. When a square wave is generated in full-duty cycle mode, the dead time function is turned on to prevent a short circuit.
Td Pin HIGH or OPEN LOW
Internal Counter 8/fosc 16/fosc
TOFF 1.9 s 3.8 s
TOFF values above are obtained when fosc = 4.19 MHz. fosc = reference clock (crystal oscillation)
11
2005-01-19
TB6556F/FG
5. Correcting the lead angle
The lead angle can be corrected in the turn-on signal range from 0 to 58 in relation to the induced voltage. Analog input from LA pin (0 V to 5 V divided by 32): 0 V = 0 5 V = 58 (when more than 5 V is input, 58)
6. Setting the carrier frequency
This function sets the triangular wave cycle (carrier cycle) necessary for generating the PWM signal. (The triangular wave is used for forcibly turning on the lower transistor when the motor is driven by square wave.) Carrier cycle = fosc/252 (Hz) fosc = reference clock (crystal oscillation)
7. Switching the output of the turn-on signal
This function switches the output of the turn-on signal between HIGH and LOW. Pin OS: HIGH = active HIGH LOW = active LOW
8. Outputting the reverse rotation detection signal
This function detects the motor rotation direction every electrical angle of 360. (The output is HIGH immediately after reset.) The REV terminal increases with a 180 turn-on mode during LOW.
CW/CCW Pin LOW (CW)
Actual Motor Rotating Direction CW (forward) CCW (reverse) CW (forward)
REV Pin LOW HIGH HIGH LOW
HIGH (CCW) CCW (reverse)
9. Protecting input pin
1. Overcurrent protection (Pin Idc) When the DC-link-current exceeds the internal reference voltage, performs gate block protection. Overcurrent protection is released for each carrier frequency. Reference voltage = 0.5 V (typ.) Gate protection (Pin RES) Output is turned off when the input signal is LOW, restarted when the input signal is HIGH. The abnormality is detected externally and the signal input to pin RES.
Output Turn-on Signal (U, V, W, X, Y, Z) HIGH LOW
2.
RES Pin LOW
OS Pin LOW HIGH
(When RES = LOW, bootstrap capacitor charging stops.)
12
2005-01-19
TB6556F/FG
3. Internal protection * Positional signal abnormality protection
*
Output is turned off when the positional signal is HHH or LLL; otherwise, it is restarted. Low power supply voltage protection (VCC monitor) For power supply on/off outside the operating voltage range, the turn-on signal output is kept at high impedance outside the operating voltage range to prevent damage caused by power device short circuits. However, if the voltage level is supplied from the Ve pin, this function is restricted, e.g., when Ve > 4.9 V is applied, low power supply voltage protection does not operate.
VCC Power supply voltage 4.5 V (typ.) 4.0 V (typ.) GND
VM Turn-on signal Output at high impedance Output Output at high impedance
13
2005-01-19
TB6556F/FG
Operation Flow
Positional signal (Hall IC) Position detector Phase U Counter X Phase V Phase matching V Y Phase Sine-wave pattern W (modulation signal) Comparator W Voltage instruction System clock generator Triangular wave (carrier frequency) Z U
Oscillator
Driven by square wave
(Note) 92%
Output ON duty (U, V, W)
2.1 V (typ.)
5.0 V (typ.)
Voltage command signal Ve
Note: Output ON time is decreased by the dead time (carrier frequency x 92% - Td x 2)
Driven by sine wave
100%
Modulation ratio (modulation signal)
0
2.1 V (typ.)
5.4 V (typ.)
Voltage command signal Ve
14
2005-01-19
TB6556F/FG
The modulation waveform is generated using Hall signals. The modulation waveform is then compared with the triangular wave and a sine-wave PWM signal is generated. The time (electrical degrees: 60) from the rising (or falling) edges of the three Hall signals to the next falling (or rising) edges is counted. The counted time is used as the data for the next 60 phase of the modulation waveform. There are 32 items of data for the 60 phase of the modulation waveform. The time width of one data item is 1/32 of the time width of the 60 phase of the previous modulation waveform. The modulation waveform moves forward by the width.
HU HV HW ' ' ' ' *HU, HV, HW: Hall signals
SU
SV
Sw
In the above diagram, the modulation waveform (1)' data moves forward by the 1/32 time width of the time (1) from HU: to HW: . Similarly, data (2)' moves forward by the 1/32 time width of the time (2) from HW: to HV: . If the next edge does not occur after the 32 data items end, the next 32 data items move forward by the same time width until the next edge occurs.
*t
32 31 30
6 5 4 3 2 1 SV (1)' 32 data items * t = t(1) x 1/32
The modulation wave is brought into phase with every zero-cross point of the Hall signal. The modulation wave is reset in synchronization with the rising and falling edges of the Hall signal at every 60 electrical angle. Thus, when the Hall device is not placed at the correct position or during acceleration and deceleration, the modulation waveform is not continuous at every reset.
15
2005-01-19
TB6556F/FG
Timing Charts
Hu Hv Hw
Hall signal (input)
FG signal (output)
FG
U Turn-on signal V W when driven by square wave X (output) Y Z
Su Modulation waveform when driven by sine wave (inside of IC) Sv
Sw Forward Hu Hv Hw
Hall signal (input)
FG signal (output)
FG
U Turn-on signal V W when driven by square wave X (output) Y Z
Su Modulation waveform when driven by sine wave (inside the IC) S
v
Sw Reverse
16
2005-01-19
TB6556F/FG
Operating Waveform When Driven by Square Wave (CW/CCW = LOW, OS = HIGH)
Hall signal HU HV HW
Output waveform U
X
V
Y
W
Z
Enlarged waveform W TONU Z Td Td TONL
To stabilize the bootstrap voltage, the lower outputs (X, Y, and Z) are always turned on at the carrier cycle even during off time. At that time, the upper outputs (U, V, and W) are assigned dead time and turned off at the timing when the lower outputs are turned on. (Td varies with input Ve.) Carrier cycle = fosc/252 (Hz) TONL = carrier cycle x 8% (s) (Uniformity) When the motor is driven by a square wave, acceleration or deceleration is determined by voltage Ve. The motor accelerates or decelerates according to the ON duty of TONU. (See the diagram of output ON duty on page 14.) Note: At startup, the motor is driven by a square wave when the Hall signals are 5 Hz or lower (fosc = 4 MHz) and the motor is rotating in the reverse direction to that of the TB6556F/FG controlling it (REV = HIGH). Dead time: Td = 16/fosc (s) (In more than Ve = 5.0 V)
17
2005-01-19
TB6556F/FG
Operating Waveform When Driven by Sine-Wave PWM (CW/CCW = LOW, OS = HIGH)
Generation inside of IC Modulation signal Triangular wave (carrier frequency)
Phase U
Phase V
Phase W
Output waveform
U
X
V
Y
W
Z
Inter-line voltage
VUV
(U-V)
VVW
(V-W)
VWU
(W-U)
When driven by a sine wave, the motor is accelerated or decelerated according to the ON duty of TONU as the amplitude of the modulation symbol changes according to voltage Ve. (See the diagram of the output ON duty on page 14.) Triangular wave frequency = carrier frequency = fosc/252 (Hz) Note: At startup, the motor is driven by a sine wave when the Hall signals are 5 Hz or higher (fosc = 4 MHz) and the motor is rotating in the same direction as the TB6556F/FG controlling it (REV = LOW).
18
2005-01-19
TB6556F/FG
Example of Application Circuit
G = 1 + (R2/R1) R1 Gin 24 R2 LA Gout 25 PH 26 + LPF 27 28 Upper limit Filter Lower limit Xin 14 Xout 15 21 HU 20 HV 19 HW Ve 6 to 10 V VCC 22 1 Regulator System clock generator 5-bit AD Phase U Position detector Counter Output waveform generator Selecting Phase V data Phase W Comparator Setting dead time Comparator 9 6 8 5 7 120/180 GND Vrefout 13 23 Power-on reset 11 ST/SP CW/CCW Protection ERR & GB reset FG Rotating direction Comparator PWM HU HV HW Charger Switching 120/180 & gate block protection on/off 4 U X V Y W Z Pre-driver (charge pump) Driver M Triangular wave generator 6-bit Power supply 10 Td UL 30 LL 29 Vrefout Vrefout
Peak hold
Internal Phase reference matching voltage
Comparator
12
OS
RES
Idc 3 MCU CW/CCW SS FG REV 18 2 17 16
120turn-on matrix
(Note 1)
(Note 1)
Hall IC signal
Note 1: Connect to ground as necessary to prevent IC malfunction due to noise. Note 2: Connect GND to signal ground on the application circuit. Note 3: The device may be damaged by short circuits between outputs or between output and supply or ground. Peripheral parts may also be damaged by overvoltage and overcurrent. Design the output lines, VCC and GND lines to ensure that no short circuits occur. Be careful also not to insert the IC in the wrong direction since this may destroy the IC.
19
2005-01-19
TB6556F/FG
Package Dimensions
Weight: 0.63 g (typ.)
20
2005-01-19
TB6556F/FG
Notes on contents 1. Block Diagrams
Some of the functional blocks, circuits, or constants may be omitted or simplified in the block diagram for explanatory purposes.
2. Equivalent Circuits
The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.
3. Timing Charts
Timing charts may be simplified for explanatory purposes.
4. Maximum Ratings
The absolute maximum ratings of a semiconductor device are a set of specified parameter values that must not be exceeded during operation, even for an instant. If any of these ratings are exceeded during operation, the electrical characteristics of the device may be irreparably altered, in which case the reliability and lifetime of the device can no longer be guaranteed. Moreover, any exceeding of the ratings during operation may cause breakdown, damage and/or degradation in other equipment. Applications using the device should be designed so that no maximum rating will ever be exceeded under any operating conditions. Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set forth in this document.
5. Application Circuits
The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required in the mass production design phase. In furnishing these examples of application circuits, Toshiba does not grant the use of any industrial property rights.
6. Test Circuits
Components in test circuits are used only to obtain and confirm device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure in application equipment.
Handling of the IC
Ensure that the product is installed correctly to prevent breakdown, damage and/or degradation in the product or equipment.
Over-current protection and heat protection circuits
These protection functions are intended only as a temporary means of preventing output short circuits or other abnormal conditions and are not guaranteed to prevent damage to the IC. If the guaranteed operating ranges of this product are exceeded, these protection features may not operate and some output short circuits may result in the IC being damaged. The over-current protection feature is intended to protect the IC from temporary short circuits only. Short circuits persisting over long periods may cause excessive stress and damage the IC. Systems should be configured so that any over-current condition will be eliminated as soon as possible.
Counter-electromotive force
When the motor reverses or stops, the effect of counter-electromotive force may cause the current to flow to the power source. If the power supply is not equipped with sink capability, the power and output pins may exceed the maximum rating. The counter-electromotive force of the motor will vary depending on the conditions of use and the features of the motor. Therefore make sure there will be no damage to or operational problem in the IC, and no damage to or operational errors in peripheral circuits caused by counter-electromotive force.
21
2005-01-19
TB6556F/FG
RESTRICTIONS ON PRODUCT USE
* The information contained herein is subject to change without notice.
030619EBA
* The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. * TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. * The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. * The products described in this document are subject to the foreign exchange and foreign trade laws. * TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
22
2005-01-19


▲Up To Search▲   

 
Price & Availability of TB6556FG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X